A heuristic approach to discovering user correlations from organized social stream data

Xiaokang Zhou, Qun Jin*

*この研究の対応する著者

研究成果: Article査読

28 被引用数 (Scopus)

抄録

Recently, with the widespread popularity of SNS (Social Network Service), such as Twitter, Facebook, people are increasingly accustomed to sharing feeling, experience and knowledge with each other on Internet. The high accessibility of these web sites has allowed the information to be spread across the social media more quickly and widely, which leads to more and more populations being engaged into this so-called social stream environment. All these make the organization of user relationships become increasingly important and necessary. In this study, we try to discover the potential and dynamical user correlations using those organized social streams in accordance with users’ current interests and needs, in order to assist the collaborative information seeking process. We develop a heuristic approach to build a Dynamically Socialized User Networking (DSUN) model, and define a set of measures (such as interest degree, and popularity degree) and concepts (such as complementary tie, weak tie, and strong tie), to discover and represent users’ current profiling and dynamical correlations. The corresponding algorithms are developed respectively. Finally, the architecture of the functional modules is presented, and the experiment results are demonstrated and discussed based on an application of the proposed model.

本文言語English
ページ(範囲)11487-11507
ページ数21
ジャーナルMultimedia Tools and Applications
76
9
DOI
出版ステータスPublished - 2017 5月 1

ASJC Scopus subject areas

  • ソフトウェア
  • メディア記述
  • ハードウェアとアーキテクチャ
  • コンピュータ ネットワークおよび通信

フィンガープリント

「A heuristic approach to discovering user correlations from organized social stream data」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル