A homotopy classification of two-component spatial graphs up to neighborhood equivalence

Atsuhiko Mizusawa*, Ryo Nikkuni

*この研究の対応する著者

    研究成果査読

    1 被引用数 (Scopus)

    抄録

    A neighborhood homotopy is an equivalence relation on spatial graphs which is generated by crossing changes on the same component and neighborhood equivalence. We give a complete classification of all 2-component spatial graphs up to neighborhood homotopy by the elementary divisor of a linking matrix with respect to the first homology group of each of the connected components. This also leads a kind of homotopy classification of 2-component handlebody-links.

    本文言語English
    ジャーナルTopology and its Applications
    DOI
    出版ステータスAccepted/In press - 2013 9 13

    ASJC Scopus subject areas

    • 幾何学とトポロジー

    フィンガープリント

    「A homotopy classification of two-component spatial graphs up to neighborhood equivalence」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル