A hybrid RBF-ART model and its application to medical data classification

Shing Chiang Tan, Chee Peng Lim, Junzo Watada

    研究成果: Conference contribution

    1 被引用数 (Scopus)

    抄録

    In this paper, a new variant of the Radial Basis Function Network with the Dynamic Decay Adjustment algorithm (i.e., RBFNDDA) to undertake data classification problems is proposed. The new network is formed by integrating the learning algorithm of the Fuzzy ARTMAP (FAM) neural network into RBFNDDA. The proposed RBFNDDA-FAM network inherits the salient features of FAM and overcomes the shortcomings of the original RBFNDDA network. The effectiveness of RBFNDDA-FAM is demonstrated using two benchmark problems. The first involves an artificial data set whereas the second uses a medical data set related to thyroid diagnosis. The results from these studies are compared, analyzed, and discussed. The outcomes positively reveal the potentials of RBFNDDA-FAM in learning information with a compact network architecture, in addition to high classification performances.

    本文言語English
    ホスト出版物のタイトルFrontiers in Artificial Intelligence and Applications
    ページ21-30
    ページ数10
    255
    DOI
    出版ステータスPublished - 2013

    出版物シリーズ

    名前Frontiers in Artificial Intelligence and Applications
    255
    ISSN(印刷版)09226389

    ASJC Scopus subject areas

    • Artificial Intelligence

    フィンガープリント 「A hybrid RBF-ART model and its application to medical data classification」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル