A Hybridized Discontinuous Galerkin Method with Reduced Stabilization

Issei Oikawa*

*この研究の対応する著者

研究成果: Article査読

42 被引用数 (Scopus)

抄録

In this paper, we propose a hybridized discontinuous Galerkin (HDG) method with reduced stabilization for the Poisson equation. The reduce stabilization proposed here enables us to use piecewise polynomials of degree k and k-1 for the approximations of element and inter-element unknowns, respectively, unlike the standard HDG methods. We provide the error estimates in the energy and L<sup>2</sup> norms under the chunkiness condition. In the case of k=1, it can be shown that the proposed method is closely related to the Crouzeix–Raviart nonconforming finite element method. Numerical results are presented to verify the validity of the proposed method.

本文言語English
ページ(範囲)327-340
ページ数14
ジャーナルJournal of Scientific Computing
65
1
DOI
出版ステータスPublished - 2014 12月 2

ASJC Scopus subject areas

  • ソフトウェア
  • 計算理論と計算数学
  • 理論的コンピュータサイエンス
  • 工学(全般)

フィンガープリント

「A Hybridized Discontinuous Galerkin Method with Reduced Stabilization」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル