A low-complexity quantization-domain H.264/SVC to H.264/AVC transcoder with medium-grain quality scalability

Lei Sun, Zhenyu Liu, Takeshi Ikenaga

研究成果: Conference contribution

抜粋

Scalable Video Coding (SVC) aiming to provide the ability to adapt to heterogeneous requirements. It offers great flexibility for bitstream adaptation in multi-point applications. However, transcoding between SVC and AVC is necessary due to the existence of legacy AVC-based systems. This paper proposes a fast SVC-to-AVC MGS (Medium-Grain quality Scalability) transcoder. A quantization-domain transcoding architecture is proposed for transcoding non-KEY pictures in MGS. KEY pictures are transcoded by drift-free architecture so that error propagation is constrained. Simulation results show that proposed transcoder achieves averagely 37 times speed-up compared with the re-encoding method with acceptable coding efficiency loss.

元の言語English
ホスト出版物のタイトルAdvances in Multimedia Modeling - 19th International Conference, MMM 2013, Proceedings
ページ336-346
ページ数11
エディションPART 1
DOI
出版物ステータスPublished - 2013 12 1
イベント19th International Conference on Advances in Multimedia Modeling, MMM 2013 - Huangshan, China
継続期間: 2013 1 72013 1 9

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
番号PART 1
7732 LNCS
ISSN(印刷物)0302-9743
ISSN(電子版)1611-3349

Conference

Conference19th International Conference on Advances in Multimedia Modeling, MMM 2013
China
Huangshan
期間13/1/713/1/9

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

フィンガープリント A low-complexity quantization-domain H.264/SVC to H.264/AVC transcoder with medium-grain quality scalability' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用

    Sun, L., Liu, Z., & Ikenaga, T. (2013). A low-complexity quantization-domain H.264/SVC to H.264/AVC transcoder with medium-grain quality scalability. : Advances in Multimedia Modeling - 19th International Conference, MMM 2013, Proceedings (PART 1 版, pp. 336-346). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); 巻数 7732 LNCS, 番号 PART 1). https://doi.org/10.1007/978-3-642-35725-1_31