A machine learning approach to sentence ordering for multidocument summarization and its evaluation

Danushka Bollegala*, Naoaki Okazaki, Mitsuru Ishizuka

*この研究の対応する著者

研究成果: Conference contribution

11 被引用数 (Scopus)

抄録

Ordering information is a difficult but a important task for natural language generation applications. A wrong order of information not only makes it difficult to understand, but also conveys an entirely different idea to the reader. This paper proposes an algorithm that learns orderings from a set of human ordered texts. Our model consists of a set of ordering experts. Each expert gives its precedence preference between two sentences. We combine these preferences and order sentences. We also propose two new metrics for the evaluation of sentence orderings. Our experimental results show that the proposed algorithm outperforms the existing methods in all evaluation metrics.

本文言語English
ホスト出版物のタイトルLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ページ624-635
ページ数12
3651 LNAI
DOI
出版ステータスPublished - 2005
外部発表はい
イベント2nd International Joint Conference on Natural Language Processing, IJCNLP 2005 - Jeju Island
継続期間: 2005 10月 112005 10月 13

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
3651 LNAI
ISSN(印刷版)03029743
ISSN(電子版)16113349

Other

Other2nd International Joint Conference on Natural Language Processing, IJCNLP 2005
CityJeju Island
Period05/10/1105/10/13

ASJC Scopus subject areas

  • コンピュータ サイエンス(全般)
  • 生化学、遺伝学、分子生物学(全般)
  • 理論的コンピュータサイエンス

フィンガープリント

「A machine learning approach to sentence ordering for multidocument summarization and its evaluation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル