A Method of Analysing Soliton Equations by Bilinearization

研究成果: Article査読

4 被引用数 (Scopus)


Recently, a class of new solutions have been derived for a number of soliton equations using Hirota's bilinear forms of these soliton equations (S. Oishi: J. Phys. Soc. Jpn. 47 (1979) 1341). These solutions express solitons in a background of ripples, and are named generalized soliton solutions. In this paper, it is shown that the generalized soliton solutions for the Korteweg-de Vries equation and the Kadomtsev-Petviashvili equation can be transformed into a form of Fredholm's determinants of the Gel'fand-Levitan-Marchenko integral equation. Using this result, relationship between Hirota's method and the inverse spectral method is clarified. Moreover, it is also shown that the initial value problems for these two equations can be solved using their generalized soliton solutions.

ジャーナルjournal of the physical society of japan
出版ステータスPublished - 1980 1 1

ASJC Scopus subject areas

  • Physics and Astronomy(all)

フィンガープリント 「A Method of Analysing Soliton Equations by Bilinearization」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。