A multiclass classification method by distance mapping learning network

K. Suzuki, S. Hashimoto

    研究成果: Conference contribution

    2 被引用数 (Scopus)

    抄録

    We propose a method of multiclass classification by utilizing a distance mapping learning network that is a distance-based multilayer perceptron The network can obtain the non-linear mapping between the input objects and the outputs by providing a pair of objects and the desired distance between them. It thus realizes multiclass classification based on pairwise classifications iteratively. We show the validity of the model with two classification problems: Iris classification and facial expression classification.

    本文言語English
    ホスト出版物のタイトルICONIP 2002 - Proceedings of the 9th International Conference on Neural Information Processing: Computational Intelligence for the E-Age
    出版社Institute of Electrical and Electronics Engineers Inc.
    ページ393-397
    ページ数5
    1
    ISBN(電子版)9810475241, 9789810475246
    DOI
    出版ステータスPublished - 2002
    イベント9th International Conference on Neural Information Processing, ICONIP 2002 - Singapore, Singapore
    継続期間: 2002 11 182002 11 22

    Other

    Other9th International Conference on Neural Information Processing, ICONIP 2002
    CountrySingapore
    CitySingapore
    Period02/11/1802/11/22

    ASJC Scopus subject areas

    • Computer Networks and Communications
    • Information Systems
    • Signal Processing

    フィンガープリント 「A multiclass classification method by distance mapping learning network」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル