A Note On Deformation Argument For L2 Normalized Solutions Of Nonlinear Schrödinger Equations And Systems

Norihisa Ikoma, Kazunaga Tanaka

研究成果: Article査読

18 被引用数 (Scopus)

抄録

Abstract. We study the existence of L2 normalized solutions for nonlinear Schrödinger equations and systems. Under new Palais-Smale type conditions, we develop new deformation arguments for the constrained functional on (Formula Presented). As applications, we give other proofs to the results of [5, 8, 22]. As to the results of [5, 22], our deformation result enables us to apply the genus theory directly to the corresponding functional to obtain infinitely many solutions. As to the result [8], via our deformation result, we can show the existence of vector solution without using constraint related to the Pohozaev identity.

本文言語English
ページ(範囲)609-646
ページ数38
ジャーナルAdvances in Differential Equations
24
11-12
出版ステータスPublished - 2019 11月

ASJC Scopus subject areas

  • 分析
  • 応用数学

フィンガープリント

「A Note On Deformation Argument For L2 Normalized Solutions Of Nonlinear Schrödinger Equations And Systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル