A photon turnstile dynamically regulated by one atom

Barak Dayan, A. S. Parkins, Takao Aoki, E. P. Ostby, K. J. Vahala, H. J. Kimble

研究成果: Article査読

459 被引用数 (Scopus)

抄録

Beyond traditional nonlinear optics with large numbers of atoms and photons, qualitatively new phenomena arise in a quantum regime of strong interactions between single atoms and photons. By using a microscopic optical resonator, we achieved such interactions and demonstrated a robust, efficient mechanism for the regulated transport of photons one by one. With critical coupling of the input light, a single atom within the resonator dynamically controls the cavity output conditioned on the photon number at the input, thereby functioning as a photon turnstile. We verified the transformation from a Poissonian to a sub-Poissonian photon stream by photon counting measurements of the input and output fields. The results have applications in quantum information science, including for controlled interactions of single light quanta and for scalable quantum processing on atom chips.

本文言語English
ページ(範囲)1062-1065
ページ数4
ジャーナルScience
319
5866
DOI
出版ステータスPublished - 2008 2 22
外部発表はい

ASJC Scopus subject areas

  • General

フィンガープリント 「A photon turnstile dynamically regulated by one atom」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル