A port-Dirac formulation for thermodynamics of non-simple systems

Hiroaki Yoshimura*, François Gay-Balmaz

*この研究の対応する著者

研究成果: Conference article査読

抄録

The paper presents a port-Dirac formulation for thermodynamics of non-simple systems, in which we consider a non-simple system whose thermodynamic states may be represented by several entropy variables. Here we regard such a non-simple system as an interconnected system with ports that can be represented by a port-Dirac system in the context of Dirac structures. We first show some extension of the Lagrange-d'Alembert principle for obtaining the evolution equations of such non-simple systems. Then, a Dirac structure is constructed on the Pontryagin bundle over a thermodynamic configuration manifold. Further, a port-Dirac dynamical formulation for such non-simple systems is demonstrated, where the developed evolution equations are to be equivalent with the generalized Lagrange-d'Alembert equations. The validity of the proposed approach is finally illustrated by two examples of an adiabatic piston and a resistive circuit with entropy production.

本文言語English
ページ(範囲)32-37
ページ数6
ジャーナルIFAC-PapersOnLine
54
19
DOI
出版ステータスPublished - 2021
イベント7th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2021 - Berlin, Germany
継続期間: 2021 10月 112021 10月 13

ASJC Scopus subject areas

  • 制御およびシステム工学

フィンガープリント

「A port-Dirac formulation for thermodynamics of non-simple systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル