A posteriori verification for the sign-change structure of solutions of elliptic partial differential equations

Kazuaki Tanaka*

*この研究の対応する著者

研究成果: Article査読

抄録

This paper proposes a method for rigorously analyzing the sign-change structure of solutions of elliptic partial differential equations subject to one of the three types of homogeneous boundary conditions: Dirichlet, Neumann, and mixed. Given explicitly estimated error bounds between an exact solution u and a numerically computed approximate solution u^ , we evaluate the number of sign-changes of u (the number of nodal domains) and determine the location of zero level-sets of u (the location of the nodal line). We apply this method to the Dirichlet problem of the Allen–Cahn equation. The nodal line of solutions of this equation represents the interface between two coexisting phases.

本文言語English
ジャーナルJapan Journal of Industrial and Applied Mathematics
DOI
出版ステータスAccepted/In press - 2021

ASJC Scopus subject areas

  • 工学(全般)
  • 応用数学

フィンガープリント

「A posteriori verification for the sign-change structure of solutions of elliptic partial differential equations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル