抄録
The 2-dimensional (2-D) Hilbert curve is a one-to-one mapping between 2-D space and one-dimensional (1-D) space. It is studied actively in the area of digital image processing as a scan technique (Hilbert scan) because of its property of preserving the spacial relationship of the 2-D patterns. Currently there exist several Hilbert scan algorithms. However, these algorithms have two strict restrictions in implementation. First, recursive functions are used to generate a Hilbert curve, which makes the algorithms complex and computationally expensive. Second, both sides of the scanned rectangle must have same size and each size must be a power of two, which limits the application of the Hilbert scan greatly. In this paper, a Pseudo-Hilbert scan algorithm based on two look-up tables is proposed. The proposed method improves the Hilbert scan to be suitable for real-time processing and general application. The simulation indicates that the Pseudo-Hilbert scan can preserve point neighborhoods as much as possible and take advantage of the high correlation between neighboring lattice points. It also shows competitive performance of the Pseudo-Hilbert scan in comparison with other scan techniques.
本文言語 | English |
---|---|
ページ(範囲) | 682-690 |
ページ数 | 9 |
ジャーナル | IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences |
巻 | E90-A |
号 | 3 |
DOI | |
出版ステータス | Published - 2007 3月 |
ASJC Scopus subject areas
- 信号処理
- コンピュータ グラフィックスおよびコンピュータ支援設計
- 電子工学および電気工学
- 応用数学