A Simple and Effective Usage of Self-supervised Contrastive Learning for Text Clustering

Haoxiang Shi, Cen Wang, Tetsuya Sakai

研究成果: Conference contribution

抄録

Contrastive learning is a promising approach to unsupervised learning, as it inherits the advantages of well-studied deep models without a dedicated and complex model design. In this paper, based on bidirectional encoder representations from transformers, we propose self-supervised contrastive learning (SCL) as well as few-shot contrastive learning (FCL) with unsupervised data augmentation (UDA) for text clustering. SCL outperforms state-of-the-art unsupervised clustering approaches for short texts and those for long texts in terms of several clustering evaluation measures. FCL achieves performance close to supervised learning, and FCL with UDA further improves the performance for short texts.

本文言語English
ホスト出版物のタイトル2021 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2021
出版社Institute of Electrical and Electronics Engineers Inc.
ページ315-320
ページ数6
ISBN(電子版)9781665442077
DOI
出版ステータスPublished - 2021
イベント2021 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2021 - Melbourne, Australia
継続期間: 2021 10月 172021 10月 20

出版物シリーズ

名前Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics
ISSN(印刷版)1062-922X

Conference

Conference2021 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2021
国/地域Australia
CityMelbourne
Period21/10/1721/10/20

ASJC Scopus subject areas

  • 電子工学および電気工学
  • 制御およびシステム工学
  • 人間とコンピュータの相互作用

フィンガープリント

「A Simple and Effective Usage of Self-supervised Contrastive Learning for Text Clustering」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル