### 抜粋

We discuss the singular limit of solutions to the initial value problem for a certain class of hyperbolic-elliptic coupled systems. A typical example of this problem appears in radiation hydrodynamics. It is shown that the singular limit problem of the hyperbolic-elliptic system corresponds to the concrete physical problem of making the Boltzmann number become infinitesimal and the Bouguer number become infinite, with their product kept constant. We show that the solution to the hyperbolic-elliptic coupled system converges to the solution of the corresponding hyperbolic-parabolic coupled system. First, the global existence is proved by the uniform estimate which is obtained through the standard energy method. Then applying the uniform estimate, we prove the convergence of the solution.

元の言語 | English |
---|---|

ページ（範囲） | 567-589 |

ページ数 | 23 |

ジャーナル | Indiana University Mathematics Journal |

巻 | 50 |

発行部数 | 1 |

DOI | |

出版物ステータス | Published - 2001 1 1 |

### ASJC Scopus subject areas

- Mathematics(all)

## フィンガープリント A singular limit for hyperbolic-elliptic coupled systems in radiation hydrodynamics' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

## これを引用

*Indiana University Mathematics Journal*,

*50*(1), 567-589. https://doi.org/10.1512/iumj.2001.50.1797