A singular limit for hyperbolic-elliptic coupled systems in radiation hydrodynamics

Shuichi Kawashima*, Shinya Nishibata

*この研究の対応する著者

研究成果: Article査読

22 被引用数 (Scopus)

抄録

We discuss the singular limit of solutions to the initial value problem for a certain class of hyperbolic-elliptic coupled systems. A typical example of this problem appears in radiation hydrodynamics. It is shown that the singular limit problem of the hyperbolic-elliptic system corresponds to the concrete physical problem of making the Boltzmann number become infinitesimal and the Bouguer number become infinite, with their product kept constant. We show that the solution to the hyperbolic-elliptic coupled system converges to the solution of the corresponding hyperbolic-parabolic coupled system. First, the global existence is proved by the uniform estimate which is obtained through the standard energy method. Then applying the uniform estimate, we prove the convergence of the solution.

本文言語English
ページ(範囲)567-589
ページ数23
ジャーナルIndiana University Mathematics Journal
50
1
DOI
出版ステータスPublished - 2001 1月 1
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「A singular limit for hyperbolic-elliptic coupled systems in radiation hydrodynamics」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル