A Socialized System for Enabling the Extraction of Potential Values from Natural and Social Sensing

Ryoichi Shinkuma, Yasuharu Sawada, Yusuke Omori, Kazuhiro Yamaguchi, Hiroyuki Kasai, Tatsuro Takahashi

研究成果: Chapter

2 被引用数 (Scopus)

抄録

This chapter tackles two problems we face when extracting values from sensing data: 1) it is hard for humans to understand raw/unprocessed sensing data and 2) it is inefficient in terms of management costs to keep all sensing data 'usable'. This chapter also discusses a solution, i.e., the socialized system, which encodes the characteristics of sensing data in relational graphs so as to extract values that originally contained the sensing data from the relational graphs. The system model, the encoding/decoding logic, and the real-dataset examples are presented. We also propose a content distribution paradigm built on the socialized system that is called SocialCast. SocialCast can achieve load balancing, low-retrieval latency, and privacy while distributing content using relational metrics produced from the relational graph of the socialized system. We did a simulation and present the results to demonstrate the effectiveness of this approach.

本文言語English
ホスト出版物のタイトルModeling and Optimization in Science and Technologies
出版社Springer Verlag
ページ385-404
ページ数20
DOI
出版ステータスPublished - 2015
外部発表はい

出版物シリーズ

名前Modeling and Optimization in Science and Technologies
4
ISSN(印刷版)2196-7326
ISSN(電子版)2196-7334

ASJC Scopus subject areas

  • Modelling and Simulation
  • Medical Assisting and Transcription
  • Applied Mathematics

フィンガープリント 「A Socialized System for Enabling the Extraction of Potential Values from Natural and Social Sensing」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル