A Stochastic Conservation Law with Nonhomogeneous Dirichlet Boundary Conditions

Kazuo Kobayasi, Dai Noboriguchi*

*この研究の対応する著者

研究成果: Article査読

5 被引用数 (Scopus)

抄録

This paper discusses the initial-boundary value problem (with a nonhomogeneous boundary condition) for a multi-dimensional scalar first-order conservation law with a multiplicative noise. One introduces a notion of kinetic formulations in which the kinetic defect measures on the boundary of a domain are truncated. In such a kinetic formulation, one obtains a result of uniqueness and existence. The unique solution is the limit of the solution of the stochastic parabolic approximation.

本文言語English
ページ(範囲)607-632
ページ数26
ジャーナルActa Mathematica Vietnamica
41
4
DOI
出版ステータスPublished - 2016 12 1

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「A Stochastic Conservation Law with Nonhomogeneous Dirichlet Boundary Conditions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル