A Study of Distance Metric Learning by Considering the Distances between Category Centroids

Kenta Mikawa, Manabu Kobayashi, Masayuki Goto, Shigeichi Hirasawa

    研究成果: Conference contribution

    抄録

    In this paper, we focus on pattern recognition based on the vector space model. As one of the methods, distance metric learning is known for the learning metric matrix under the arbitrary constraint. Generally, it uses iterative optimization procedure in order to gain suitable distance structure by considering the statistical characteristics of training data. Most of the distance metric learning methods estimate suitable metric matrix from all pairs of training data. However, the computational cost is considerable if the number of training data increases in this setting. To avoid this problem, we propose the way of learning distance metric by using the each category centroid. To verify the effectiveness of proposed method, we conduct the simulation experiment by using benchmark data.

    本文言語English
    ホスト出版物のタイトルProceedings - 2015 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2015
    出版社Institute of Electrical and Electronics Engineers Inc.
    ページ1645-1650
    ページ数6
    ISBN(印刷版)9781479986965
    DOI
    出版ステータスPublished - 2016 1月 12
    イベントIEEE International Conference on Systems, Man, and Cybernetics, SMC 2015 - Kowloon Tong, Hong Kong
    継続期間: 2015 10月 92015 10月 12

    Other

    OtherIEEE International Conference on Systems, Man, and Cybernetics, SMC 2015
    国/地域Hong Kong
    CityKowloon Tong
    Period15/10/915/10/12

    ASJC Scopus subject areas

    • 人工知能
    • コンピュータ ネットワークおよび通信
    • エネルギー工学および電力技術
    • 情報システムおよび情報管理
    • 制御およびシステム工学

    フィンガープリント

    「A Study of Distance Metric Learning by Considering the Distances between Category Centroids」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル