A two-step supervised learning artificial neural network for imbalanced dataset problems

Asrul Adam, Zuwairie Ibrahim, Mohd Ibrahim Shapiai, Lim Chun Chew, Lee Wen Jau, Marzuki Khalid, Junzo Watada

    研究成果: Article査読

    8 被引用数 (Scopus)

    抄録

    In this paper, a two-step supervised learning algorithm of a single layer feedforward Artificial Neural Network (ANN) is proposed for solving imbalanced dataset problems. Levenberg Marquart backpropagation learning algorithm is utilized in the first step learning, while the second step learning mechanism is introduced by optimizing the decision threshold of the step function at the output layer of ANN using particle swarm optimization (PSO). After all the steps learning are accomplished, the best weights and decision threshold value are obtained to be used for testing process. Several imbalanced datasets, which are available in UCI Machine Learning Repository, are chosen as case study. The prediction performance is assessed by Geometric Mean (G-mean), which is a standard measure to indicate the efficiency of classifier for imbalanced datasets. Based on the experimental results, the proposed method is able to provide good G-mean value compared with the conventional ANN approaches.

    本文言語English
    ページ(範囲)3163-3172
    ページ数10
    ジャーナルInternational Journal of Innovative Computing, Information and Control
    8
    5 A
    出版ステータスPublished - 2012 5

    ASJC Scopus subject areas

    • 計算理論と計算数学
    • 情報システム
    • ソフトウェア
    • 理論的コンピュータサイエンス

    フィンガープリント

    「A two-step supervised learning artificial neural network for imbalanced dataset problems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル