### 抜粋

Let A^{*} = Hom (A, Z) for an Abelian group A, were Z is the group of integers. A^{*} is endowed with the topology as a subspace of Z^{A}. Then, for a 0-dimensional space X and an infinite cardinal κ the following are equivalent. (1) There exists a free summand of C(X, Z) of rank κ; (2) there exists a subgroup of C(X, Z)^{*} isomorphic to Z^{κ}; (3) there exists a compact subset K of β_{N}X with w(K)≥κ; (4) there exists a compact subset K of C(X, Z)^{*} with w(K)≥κ. There exist groups A such that A^{*} is a subgroup of Z^{N} and A^{*} is not isomorphic to A^{***}.

元の言語 | English |
---|---|

ページ（範囲） | 131-151 |

ページ数 | 21 |

ジャーナル | Topology and its Applications |

巻 | 53 |

発行部数 | 2 |

DOI | |

出版物ステータス | Published - 1993 11 26 |

外部発表 | Yes |

### ASJC Scopus subject areas

- Geometry and Topology

## フィンガープリント Abelian groups of continuous functions and their duals' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

## これを引用

Eda, K., Kamo, S., & Ohta, H. (1993). Abelian groups of continuous functions and their duals.

*Topology and its Applications*,*53*(2), 131-151. https://doi.org/10.1016/0166-8641(93)90133-X