Achieving short ciphertexts or short secret-keys for adaptively secure general inner-product encryption

Tatsuaki Okamoto*, Katsuyuki Takashima

*この研究の対応する著者

研究成果: Conference contribution

59 被引用数 (Scopus)

抄録

In this paper, we present two non-zero inner-product encryption (NIPE) schemes that are adaptively secure under a standard assumption, the decisional linear (DLIN) assumption, in the standard model. One of the proposed NIPE schemes features constant-size ciphertexts and the other features constant-size secret-keys. Our NIPE schemes imply an identity-based revocation (IBR) system with constant-size ciphertexts or constant-size secret-keys that is adaptively secure under the DLIN assumption. Any previous IBR scheme with constant-size ciphertexts or constant-size secret-keys was not adaptively secure in the standard model. This paper also presents two zero inner-product encryption (ZIPE) schemes each of which has constant-size ciphertexts or constant-size secret-keys and is adaptively secure under the DLIN assumption in the standard model. They imply an identity-based broadcast encryption (IBBE) system with constant-size ciphertexts or constant-size secret-keys that is adaptively secure under the DLIN assumption.

本文言語English
ホスト出版物のタイトルCryptology and Network Security - 10th International Conference, CANS 2011, Proceedings
ページ138-159
ページ数22
DOI
出版ステータスPublished - 2011
外部発表はい
イベント10th International Conference on Cryptography and Network Security, CANS 2011 - Sanya, China
継続期間: 2011 12 102011 12 12

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
7092 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Conference

Conference10th International Conference on Cryptography and Network Security, CANS 2011
国/地域China
CitySanya
Period11/12/1011/12/12

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Achieving short ciphertexts or short secret-keys for adaptively secure general inner-product encryption」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル