Adaptive motion generation using imitation learning and highly compliant end effector for autonomous cleaning

G. A. Garcia Ricardez*, N. Koganti, P. C. Yang, S. Okada, P. M. Uriguen Eljuri, A. Yasuda, L. El Hafi, M. Yamamoto, J. Takamatsu, T. Ogasawara

*この研究の対応する著者

研究成果: Article査読

12 被引用数 (Scopus)

抄録

Recent demographic trends in super aging societies, such as Japan, is leading to severe worker shortage. Service robots can play a promising role to augment human workers for performing various household and assistive tasks. Toilet cleanup is one such challenging task that involves performing complaint motion planning in a constrained toilet setting. In this study, we propose an end-to-end robotic framework to perform various tasks related to toilet cleanup. Our key contributions include the design of a complaint and multipurpose end-effector, an adaptive motion generation algorithm, and an autonomous mobile manipulator capable of garbage detection, garbage disposal and liquid removal. We evaluate the performance of our framework with the competition setting used for toilet cleanup in the Future Convenience Store Challenge at the World Robot Summit 2018. We demonstrate that our proposed framework is capable of successfully completing all the tasks of the competition within the time limit.

本文言語English
ページ(範囲)189-201
ページ数13
ジャーナルAdvanced Robotics
34
3-4
DOI
出版ステータスPublished - 2020 2月 16
外部発表はい

ASJC Scopus subject areas

  • 制御およびシステム工学
  • ソフトウェア
  • 人間とコンピュータの相互作用
  • ハードウェアとアーキテクチャ
  • コンピュータ サイエンスの応用

フィンガープリント

「Adaptive motion generation using imitation learning and highly compliant end effector for autonomous cleaning」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル