## 抄録

There are several algorithms for N-dimensional Hilbert scanning, such as the Butz algorithm and the Quinqueton algorithm. The Butz algorithm is a mapping function using several bit operations such as shifting, exclusive OR, etc. On the other hand, the Quinqueton algorithm computes all addresses of this curve using recursive functions, but takes time to compute a one-to-one mapping correspondence. Both algorithms are complex to compute and both are difficult to implement in hardware. In this paper, we propose a new, simple, non-recursive algorithm for N-dimensional Hilbert scanning using lookup tables. The merit of our algorithm is that the computation is fast and the hardware implementation is much easier than previous ones.

本文言語 | English |
---|---|

ページ | 1031-1034 |

ページ数 | 4 |

出版ステータス | Published - 1996 12月 1 |

外部発表 | はい |

イベント | Proceedings of the 1996 IEEE International Conference on Image Processing, ICIP'96. Part 2 (of 3) - Lausanne, Switz 継続期間: 1996 9月 16 → 1996 9月 19 |

### Other

Other | Proceedings of the 1996 IEEE International Conference on Image Processing, ICIP'96. Part 2 (of 3) |
---|---|

City | Lausanne, Switz |

Period | 96/9/16 → 96/9/19 |

## ASJC Scopus subject areas

- ハードウェアとアーキテクチャ
- コンピュータ ビジョンおよびパターン認識
- 電子工学および電気工学