Address generator of an N-dimensional Hilbert scan

Sei ichiro Kamata*

*この研究の対応する著者

研究成果: Paper査読

1 被引用数 (Scopus)

抄録

There are several algorithms for N-dimensional Hilbert scanning, such as the Butz algorithm and the Quinqueton algorithm. The Butz algorithm is a mapping function using several bit operations such as shifting, exclusive OR, etc. On the other hand, the Quinqueton algorithm computes all addresses of this curve using recursive functions, but takes time to compute a one-to-one mapping correspondence. Both algorithms are complex to compute and both are difficult to implement in hardware. In this paper, we propose a new, simple, non-recursive algorithm for N-dimensional Hilbert scanning using lookup tables. The merit of our algorithm is that the computation is fast and the hardware implementation is much easier than previous ones.

本文言語English
ページ1031-1034
ページ数4
出版ステータスPublished - 1996 12 1
外部発表はい
イベントProceedings of the 1996 IEEE International Conference on Image Processing, ICIP'96. Part 2 (of 3) - Lausanne, Switz
継続期間: 1996 9 161996 9 19

Other

OtherProceedings of the 1996 IEEE International Conference on Image Processing, ICIP'96. Part 2 (of 3)
CityLausanne, Switz
Period96/9/1696/9/19

ASJC Scopus subject areas

  • ハードウェアとアーキテクチャ
  • コンピュータ ビジョンおよびパターン認識
  • 電子工学および電気工学

フィンガープリント

「Address generator of an N-dimensional Hilbert scan」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル