Adjoint varieties and their secant varieties

Hajime Kaji*, Masahiro Ohno, Osami Yasukura

*この研究の対応する著者

研究成果: Article査読

9 被引用数 (Scopus)

抄録

The purpose of this article is to show how the graded decomposition of complex simple Lie algebras g can be applied to studying adjoint varieties X and their secant varieties Sec X. Firstly quadratic equations defining adjoint varieties are explicitly given. Secondly it is shown that dim Sec X = 2 dim X for adjoint varieties X in two ways: one is based on Terracini's lemma, and the other is on some explicit description of Sec X in terms of an orbit of the adjoint action. Finally it is shown that the contact loci of the secant variety to its embedded tangent space have dimension two if X is adjoint.

本文言語English
ページ(範囲)45-57
ページ数13
ジャーナルIndagationes Mathematicae
10
1
DOI
出版ステータスPublished - 1999 3 29

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Adjoint varieties and their secant varieties」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル