Adsorption mechanisms of emerging micro-pollutants with a clay mineral: Case of tramadol and doxepine pharmaceutical products

Thomas Thiebault, Régis Guégan, Mohammed Boussafir

研究成果: Article

53 被引用数 (Scopus)

抄録

A sodium exchanged smectite clay mineral (Mt) was used as geo-sorbent for the adsorption of tramadol and doxepin: two pharmaceutical products (PPs) defined as emerging pollutants due to their presence at significant concentration in numerous water compartments. The adsorption isotherms for both the temperatures of 20 and 40°C and the derived data determined through the fitting procedure by using Langmuir, Freundlich and Dubinin-Radushkevich equation models explicitly pointed out that the sorption of both tramadol and doxepin is mainly driven by electrostatic interaction. The studied PPs are intercalated in a monolayer arrangement within the interlayer space through a cation exchange in stoichiometric proportion with the Na+ cations leading to adsorbed PPs amounts that match the cation exchange capacity (CEC) of Mt. Due to their hydrophobic character, additional doxepin molecules could be adsorbed by weak molecular interaction driving to an increase of the adsorbed amount beyond the CEC at low temperature (20°C). The confinement of PPs within the interlayer space of Mt confirms the use of clay minerals as potential material for the wastewater treatment as well as it drives to an amorphous or glassy state, which can find echo in biopharmaceutical applications for a controlled release of PPs.

元の言語English
ページ(範囲)1-8
ページ数8
ジャーナルJournal of Colloid And Interface Science
453
DOI
出版物ステータスPublished - 2015 9 1

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Surfaces, Coatings and Films
  • Colloid and Surface Chemistry

フィンガープリント 「Adsorption mechanisms of emerging micro-pollutants with a clay mineral: Case of tramadol and doxepine pharmaceutical products」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル