Affective music recommendation system using input images

Shoto Sasaki, Tatsunori Hirai, Hayato Ohya, Shigeo Morishima

研究成果: Conference contribution

5 被引用数 (Scopus)

抄録

Music that matches our current mood can create a deep impression, which we usually want to enjoy when we listen to music. However, we do not know which music best matches our present mood. We have to listen to each song, searching for music that matches our mood. As it is difficult to select music manually, we need a recommendation system that can operate affectively. Most recommendation methods, such as collaborative filtering or content similarity, do not target a specific mood. In addition, there may be no word exactly specifying the mood. Therefore, textual retrieval is not effective. In this paper, we assume that there exists a relationship between our mood and images because visual information affects our mood when we listen to music. We now present an affective music recommendation system using an input image without textual information.

本文言語English
ホスト出版物のタイトルACM SIGGRAPH 2013 Posters, SIGGRAPH 2013
DOI
出版ステータスPublished - 2013 8月 21
イベントACM Special Interest Group on Computer Graphics and Interactive Techniques Conference, SIGGRAPH 2013 - Anaheim, CA, United States
継続期間: 2013 7月 212013 7月 25

出版物シリーズ

名前ACM SIGGRAPH 2013 Posters, SIGGRAPH 2013

Conference

ConferenceACM Special Interest Group on Computer Graphics and Interactive Techniques Conference, SIGGRAPH 2013
国/地域United States
CityAnaheim, CA
Period13/7/2113/7/25

ASJC Scopus subject areas

  • コンピュータ グラフィックスおよびコンピュータ支援設計
  • コンピュータ ビジョンおよびパターン認識
  • ソフトウェア

フィンガープリント

「Affective music recommendation system using input images」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル