Algebraic shifting and strongly edge decomposable complexes

Satoshi Murai*

*この研究の対応する著者

研究成果: Paper査読

抄録

Let Γ be a simplicial complex with n vertices, and let Δ(Γ) be either its exterior algebraic shifted complex or its symmetric algebraic shifted complex. If Γ is a simplicial sphere, then it is known that (a) Δ(Γ) is pure and (b) h-vector of Γ is symmetric. Kalai and Sarkaria conjectured that if Γ is a simplicial sphere then its algebraic shifting also satisfies (c) Δ (Γ) ⊂ Δ (C(n; d)), where C(n; d) is the boundary complex of the cyclic d-polytope with n vertices. We show this conjecture for strongly edge decomposable spheres introduced by Nevo. We also show that any shifted simplicial complex satisfying (a), (b) and (c) is the algebraic shifted complex of some simplicial sphere.

本文言語English
ページ1-12
ページ数12
出版ステータスPublished - 2008
外部発表はい
イベント20th International Conference on Formal Power Series and Algebraic Combinatorics, FPSAC'08 - Valparaiso, Chile
継続期間: 2008 6月 232008 6月 27

Other

Other20th International Conference on Formal Power Series and Algebraic Combinatorics, FPSAC'08
国/地域Chile
CityValparaiso
Period08/6/2308/6/27

ASJC Scopus subject areas

  • 代数と数論

フィンガープリント

「Algebraic shifting and strongly edge decomposable complexes」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル