Algebraic shifting of cyclic polytopes and stacked polytopes

研究成果: Paper査読

抄録

Gil Kalai introduced the shifting-theoretic upper bound relation to characterize the f-vectors of Gorenstein * complexes (or homology spheres) by using algebraic shifting. In the present paper, we study the shifting-theoretic upper bound relation. First, we will study the relation between exterior algebraic shifting and combinatorial shifting. Second, by using the relation above, we will prove that the boundary complex of cyclic polytopes satisfies the shifting theoretic upper bound relation. We also prove that the boundary complex of stacked polytopes satisfies the shifting-theoretic upper bound relation.

本文言語English
ページ607-615
ページ数9
出版ステータスPublished - 2006 12 1
外部発表はい
イベント18th Annual International Conference on Formal Power Series and Algebraic Combinatorics, FPSAC 2006 - San Diego, CA, United States
継続期間: 2006 6 192006 6 23

Other

Other18th Annual International Conference on Formal Power Series and Algebraic Combinatorics, FPSAC 2006
CountryUnited States
CitySan Diego, CA
Period06/6/1906/6/23

ASJC Scopus subject areas

  • Algebra and Number Theory

フィンガープリント 「Algebraic shifting of cyclic polytopes and stacked polytopes」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル