Ammonia decomposition to clean hydrogen using non-thermal atmospheric-pressure plasma

Mao Akiyama, Keigo Aihara, Tomiko Sawaguchi, Masahiko Matsukata, Masakazu Iwamoto*


研究成果: Article査読

14 被引用数 (Scopus)


The plasma decomposition of ammonia was studied as a function of applied voltage/power, residence time including length of an inner electrode and flow rate of reactant gases, partial pressure of ammonia, and amount and the metal species of the inner electrodes. The ammonia decomposition rates were in excellent agreement with the hydrogen production rates and no hydrazine production was detected, indicating the clean decomposition of ammonia in the current system. The decomposition rates were dependent on the applied power and the residence time and independent of metal species of the inner electrodes, in contrast to the strong dependence of the ammonia synthesis reaction on the metal species. A hydrogen yield of 100% was achieved with an applied power of approximately 50 W and a residence time of 1.2 s at ambient temperature and atmospheric pressure, with an applied voltage of 5 kV and a frequency of 50 kHz.

ジャーナルInternational Journal of Hydrogen Energy
出版ステータスPublished - 2018 8 2

ASJC Scopus subject areas

  • 再生可能エネルギー、持続可能性、環境
  • 燃料技術
  • 凝縮系物理学
  • エネルギー工学および電力技術


「Ammonia decomposition to clean hydrogen using non-thermal atmospheric-pressure plasma」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。