An accurate and robust algorithm for tracking guitar neck in 3D based on modified RANSAC homography

Zhao Wang, Jun Ohya

    研究成果: Conference article


    Towards the actualization of an automatic guitar teaching system that can supervise guitar players, this paper proposes an algorithm for accurately and robustly tracking the 3D position of the fretboard from the video of guitar plays. First, we detect the SIFT features within the guitar fretboard and then match the detected points using KD-tree searching based matching algorithm frame by frame to track the whole fretboard. However, during the guitar plays, due to movements of the guitar neck or occlusions caused by guitar players' fingers, the feature points on the fretboard cannot always be matched accurately even though applying traditional RANSAC homography. Therefore, by using our modified RANSAC algorithm to filter out the matching error of the feature points, perspective transformation matrix is obtained between the correctly matched feature points detected at the first and other frames. Consequently, the guitar neck is tracked correctly based on the perspective transformation matrix. Experiments show promising results such as high accuracy: the total mean tracking error of only 4.17 mm and variance of 1.5 for the four tracked corners of the fretboard. This indicates the proposed method outperforms related tracking works including state-of-art Fully-convolutional Network.

    ジャーナルIS and T International Symposium on Electronic Imaging Science and Technology
    Part F138651
    出版ステータスPublished - 2018 1 1
    イベント3D Image Processing, Measurement (3DIPM), and Applications 2018 - Burlingame, United States
    継続期間: 2018 1 282018 2 1

    ASJC Scopus subject areas

    • Computer Graphics and Computer-Aided Design
    • Computer Science Applications
    • Human-Computer Interaction
    • Software
    • Electrical and Electronic Engineering
    • Atomic and Molecular Physics, and Optics

    フィンガープリント 「An accurate and robust algorithm for tracking guitar neck in 3D based on modified RANSAC homography」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。