TY - JOUR
T1 - An analysis of the current status of woody biomass gasification power generation in japan
AU - Baba, Yasutsugu
AU - Pandyaswargo, Andante Hadi
AU - Onoda, Hiroshi
N1 - Funding Information:
Funding: The APC was funded by Waseda University.
Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/9
Y1 - 2020/9
N2 - Forests cover two-thirds of Japan’s land area, and woody biomass is attracting attention as one of the most promising renewable energy sources in the country. The Feed-in Tariff (FIT) Act came into effect in 2012, and since then, woody biomass power generation has spread rapidly. Gasification power generation, which can generate electricity on a relatively small scale, has attracted a lot of attention. However, the technical issues of this technology remain poorly defined. This paper aims to clarify the problems of woody biomass gasification power generation in Japan, specifically on the challenges of improving energy utilization rate, the problem of controlling the moisture content, and the different performance of power generation facilities that uses different tree species. We also describe the technological development of a 2 MW updraft reactor for gasification and bio-oil coproduction to improve the energy utilization rate. The lower heating value of bio-oil, which was obtained in the experiment, was found to be about 70% of A-fuel oil. Among the results, the importance of controlling the moisture content of wood chips is identified from the measurement evaluation of a 0.36 MW-scale downdraft gasifier’s actual operation. We discuss the effects of tree species variation and ash on gasification power generation based on the results of pyrolysis analysis, industry analysis for each tree species. These results indicate the necessity of building a system specifically suited to Japan’s climate and forestry industry to allow woody biomass gasification power generation to become widespread in Japan.
AB - Forests cover two-thirds of Japan’s land area, and woody biomass is attracting attention as one of the most promising renewable energy sources in the country. The Feed-in Tariff (FIT) Act came into effect in 2012, and since then, woody biomass power generation has spread rapidly. Gasification power generation, which can generate electricity on a relatively small scale, has attracted a lot of attention. However, the technical issues of this technology remain poorly defined. This paper aims to clarify the problems of woody biomass gasification power generation in Japan, specifically on the challenges of improving energy utilization rate, the problem of controlling the moisture content, and the different performance of power generation facilities that uses different tree species. We also describe the technological development of a 2 MW updraft reactor for gasification and bio-oil coproduction to improve the energy utilization rate. The lower heating value of bio-oil, which was obtained in the experiment, was found to be about 70% of A-fuel oil. Among the results, the importance of controlling the moisture content of wood chips is identified from the measurement evaluation of a 0.36 MW-scale downdraft gasifier’s actual operation. We discuss the effects of tree species variation and ash on gasification power generation based on the results of pyrolysis analysis, industry analysis for each tree species. These results indicate the necessity of building a system specifically suited to Japan’s climate and forestry industry to allow woody biomass gasification power generation to become widespread in Japan.
KW - Gasification
KW - Japanese technology development
KW - Woody biomass
UR - http://www.scopus.com/inward/record.url?scp=85091839682&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85091839682&partnerID=8YFLogxK
U2 - 10.3390/en13184903
DO - 10.3390/en13184903
M3 - Article
AN - SCOPUS:85091839682
VL - 13
JO - Energies
JF - Energies
SN - 1996-1073
IS - 18
M1 - 4903
ER -