An Angle Rotate-QAM aided Differential Spatial Modulation for 5G Ubiquitous Mobile Networks

Yajun Fan, Liuqing Yang, Dalong Zhang, Gangtao Han, Di Zhang*



11 被引用数 (Scopus)


As a novel multiple-input multiple-output (MIMO) wireless transmission technique, differential spatial modulation (DSM) can reduce the computational complexity, and henceforth provides a feasible communications option in terms of the intelligence computing for fifth generation (5G) ubiquitous mobile networks. In this paper, a novel high-rate design scheme relying on angle rotate quadrature amplitude modulation (ARQAM) is proposed for DSM schemes. Through layering QAM symbols, the final transmit matrix can be expressed as the superposition of the different layered matrices. Numercial results indicate that the proposed scheme outperforms the identical-throughput multi-ring APSK-aided and PSK-aided DSM schemes. Additionally, we investigate the impact of two-dimensional (2D) and three-dimensional (3D) regular-shaped geometry-based stochastic model (RS-GBSM) for non-isotropic scattering narrowband MIMO vehicle-to-vehicle (V2V) Ricean fading channel for the proposed ARQAM-aided DSM. Its performance is limited by the V2V channel required for differential detection. Moreover, the influences adopted with 3D MIMO channel model are more significant than 2D MIMO channel model.

ジャーナルMobile Networks and Applications
出版ステータスAccepted/In press - 2019

ASJC Scopus subject areas

  • ソフトウェア
  • 情報システム
  • ハードウェアとアーキテクチャ
  • コンピュータ ネットワークおよび通信


「An Angle Rotate-QAM aided Differential Spatial Modulation for 5G Ubiquitous Mobile Networks」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。