An approximation algorithm for the hamiltonian walk problem on maximal planar graphs

Takao Nishizeki*, Takao Asano, Takahiro Watanabe

*この研究の対応する著者

研究成果査読

20 被引用数 (Scopus)

抄録

A hamiltonian walk of a graph is a shortest closed walk that passes through every vertex at least once, and the length is the total number of traversed edges. The hamiltonian walk problem in which one would like to find a hamiltonian walk of a given graph is NP-complete. The problem is a generalized hamiltonian cycle problem and is a special case of the traveling salesman problem. Employing the techniques of divide-and-conquer and augmentation, we present an approximation algorithm for the problem on maximal planar graphs. The algorithm finds, in O(p2) time, a closed spanning walk of a given arbitrary maximal planar graph, and the length of the obtained walk is at most 3 2(p - 3) if the graph has p (≥ 9) vertices. Hence the worst-case bound is 3 2.

本文言語English
ページ(範囲)211-222
ページ数12
ジャーナルDiscrete Applied Mathematics
5
2
DOI
出版ステータスPublished - 1983 2
外部発表はい

ASJC Scopus subject areas

  • 離散数学と組合せ数学
  • 応用数学

フィンガープリント

「An approximation algorithm for the hamiltonian walk problem on maximal planar graphs」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル