An efficient design of irregular LDPC codes using beta approximation for the Gilbert-Elliott channel

Manabu Kobayashi*, Hideki Yagi, Toshiyasu Matsushima, Shigeichi Hirasawa

*この研究の対応する著者

研究成果: Conference contribution

抄録

In this paper, we investigate the design of low-density parity-check (LDPC) codes for the Gilbert-Elliott (GE) channel. Recently, Eckford et al. proposed a design method of irregular LDPC codes using approximate density-evolution (DE) for Markov channels [7]. In the design method proposed by Eckford et al., the probability density function (PDF) of the messages from variable nodes to check nodes is approximated by the Gaussian distribution. In this paper, we first show the method to obtain the accurate PDF of the messages from variable nodes to check nodes by utilizing two DE steps for the Gaussian distribution. We call this method the iterative density approximation (IDA). Using this method, we can design the good LDPC codes. Next, we propose an efficient design method of irregular LDPC codes by using Beta approximation to the PDF of the channel state probability for the GE channel. Consequently, we show that the complexity to calculate PDFs of the channel messages is considerably reduced though the rates of LDPC codes obtained by using the proposed approximation are almost the same as that of the IDA method.

本文言語English
ホスト出版物のタイトル2008 International Symposium on Information Theory and its Applications, ISITA2008
DOI
出版ステータスPublished - 2008 12 1
イベント2008 International Symposium on Information Theory and its Applications, ISITA2008 - Auckland, New Zealand
継続期間: 2008 12 72008 12 10

出版物シリーズ

名前2008 International Symposium on Information Theory and its Applications, ISITA2008

Conference

Conference2008 International Symposium on Information Theory and its Applications, ISITA2008
国/地域New Zealand
CityAuckland
Period08/12/708/12/10

ASJC Scopus subject areas

  • コンピュータ サイエンス(全般)

フィンガープリント

「An efficient design of irregular LDPC codes using beta approximation for the Gilbert-Elliott channel」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル