An efficient identification scheme for a nonlinear polynomial NARX model

Yu Cheng, Lan Wang, Miao Yu, Jinglu Hu*

*この研究の対応する著者

研究成果査読

9 被引用数 (Scopus)

抄録

Nonlinear polynomial NARX (nonlinear autoregressive with exogenous inputs) model identification often faces the problem of the huge size of the candidate pool, which makes the "wrapper" structure selection algorithm worked at low efficiency. In this article, a correlation-based orthogonal forward selection (COFS) algorithm is proposed to select the necessary input variables so that the candidate pool thus formed becomes tractable. What is more, it is trunked by an importance index-based term selection method, where a multiobjective evolutionary algorithm (MOEA)-based structure selection algorithm could be used to identify the polynomial model efficiently. Two numerical simulations are carried out to show the effectiveness of the proposed method.

本文言語English
ページ(範囲)70-73
ページ数4
ジャーナルArtificial Life and Robotics
16
1
DOI
出版ステータスPublished - 2011 6 1

ASJC Scopus subject areas

  • 生化学、遺伝学、分子生物学(全般)
  • 人工知能

フィンガープリント

「An efficient identification scheme for a nonlinear polynomial NARX model」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル