抄録
The Ω -rule was introduced by W. Buchholz to give an ordinal-free proof of cut-elimination for a subsystem of analysis with Π 1 1-comprehension. W. Buchholz’s proof provides cut-free derivations by familiar rules only for arithmetical sequents. When second-order quantifiers are present, they are introduced by the Ω -rule and some residual cuts are not eliminated. In the present paper, we introduce an extension of the Ω -rule and prove the complete cut-elimination by the same method as W. Buchholz: any derivation of arbitrary sequent is transformed into its cut-free derivation by the standard rules (with induction replaced by the ω-rule). In fact we treat the subsystem of Π 1 1-CA (of the same strength as ID1) that W. Buchholz used for his explanation of G. Takeuti’s finite reductions. Extension to full Π 1 1-CA is planned for another paper.
本文言語 | English |
---|---|
ページ(範囲) | 593-603 |
ページ数 | 11 |
ジャーナル | Archive for Mathematical Logic |
巻 | 55 |
号 | 3-4 |
DOI | |
出版ステータス | Published - 2016 5月 1 |
ASJC Scopus subject areas
- 論理
- 哲学