An improvement on the Brézis–Gallouët technique for 2D NLS and 1D half-wave equation

Tohru Ozawa, Nicola Visciglia

研究成果: Article

8 引用 (Scopus)

抜粋

We revise the classical approach by Brézis–Gallouët to prove global well-posedness for nonlinear evolution equations. In particular we prove global well-posedness for the quartic NLS on general domains Ω in R2 with initial data in H2(Ω)∩H01(Ω), and for the quartic nonlinear half-wave equation on R with initial data in H1(R).

元の言語English
ページ(範囲)1069-1079
ページ数11
ジャーナルAnnales de l'Institut Henri Poincare (C) Analyse Non Lineaire
33
発行部数4
DOI
出版物ステータスPublished - 2016 7 1

ASJC Scopus subject areas

  • Analysis
  • Mathematical Physics
  • Applied Mathematics

フィンガープリント An improvement on the Brézis–Gallouët technique for 2D NLS and 1D half-wave equation' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用