An integrable semi-discrete Degasperis-Procesi equation

Bao Feng Feng, Kenichi Maruno, Yasuhiro Ohta

    研究成果: Article

    2 引用 (Scopus)

    抜粋

    Based on our previous work on the Degasperis-Procesi equation (Feng et al J. Phys. A: Math. Theor. 46 045205) and the integrable semi-discrete analogue of its short wave limit (Feng et al J. Phys. A: Math. Theor. 48 135203), we derive an integrable semi-discrete Degasperis-Procesi equation by Hirota's bilinear method. Furthermore, N-soliton solution to the semi-discrete Degasperis-Procesi equation is constructed. It is shown that both the proposed semi-discrete Degasperis-Procesi equation, and its N-soliton solution converge to ones of the original Degasperis-Procesi equation in the continuum limit.

    元の言語English
    ページ(範囲)2246-2267
    ページ数22
    ジャーナルNonlinearity
    30
    発行部数6
    DOI
    出版物ステータスPublished - 2017 4 19

      フィンガープリント

    ASJC Scopus subject areas

    • Statistical and Nonlinear Physics
    • Mathematical Physics
    • Physics and Astronomy(all)
    • Applied Mathematics

    これを引用