An integrable semi-discrete Degasperis-Procesi equation

Bao Feng Feng, Ken Ichi Maruno, Yasuhiro Ohta

研究成果: Article査読

2 被引用数 (Scopus)

抄録

Based on our previous work on the Degasperis-Procesi equation (Feng et al J. Phys. A: Math. Theor. 46 045205) and the integrable semi-discrete analogue of its short wave limit (Feng et al J. Phys. A: Math. Theor. 48 135203), we derive an integrable semi-discrete Degasperis-Procesi equation by Hirota's bilinear method. Furthermore, N-soliton solution to the semi-discrete Degasperis-Procesi equation is constructed. It is shown that both the proposed semi-discrete Degasperis-Procesi equation, and its N-soliton solution converge to ones of the original Degasperis-Procesi equation in the continuum limit.

本文言語English
ページ(範囲)2246-2267
ページ数22
ジャーナルNonlinearity
30
6
DOI
出版ステータスPublished - 2017 4 19

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Mathematical Physics
  • Physics and Astronomy(all)
  • Applied Mathematics

フィンガープリント 「An integrable semi-discrete Degasperis-Procesi equation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル