TY - JOUR

T1 - An Interior Point Method for Power System Weighted Nonlinear L1 Norm Static State Estimation

AU - Wei, H.

AU - Sasaki, H.

AU - Kubokawa, J.

AU - Yokoyama, R.

PY - 1997

Y1 - 1997

N2 - This paper presents a new interior point algorithm to solve power system weighted nonlinear L1 norm state estimation problems (IPWNL1). On the basis of the perturbed Karush-Kuhn-Tucker (KKT) conditions of the primal problem, we derive the IPWNL1 algorithm for solving the state estimation problems. Compared with the sequential linear programming approach and logarithmic barrier function method, the proposed IPWNL1 algorithm possesses excellent convergence property. That is, the number of iterations until convergence is roughly constant with system size and measurement redundancy and mostly less than 10. Moreover, it has another valuable property that the convergence of the algorithm is quite insensitive to changes in weighting factors. To greatly enhance the computational efficiency, two schemes of the correction equation are proposed which have been realized by the rearrangement of the correction equation. Simulation experiments on test systems, which range in size from 5 to 1047 buses, have shown that the proposed algorithm has reached the level of practical applications due to its fast and robust property.

AB - This paper presents a new interior point algorithm to solve power system weighted nonlinear L1 norm state estimation problems (IPWNL1). On the basis of the perturbed Karush-Kuhn-Tucker (KKT) conditions of the primal problem, we derive the IPWNL1 algorithm for solving the state estimation problems. Compared with the sequential linear programming approach and logarithmic barrier function method, the proposed IPWNL1 algorithm possesses excellent convergence property. That is, the number of iterations until convergence is roughly constant with system size and measurement redundancy and mostly less than 10. Moreover, it has another valuable property that the convergence of the algorithm is quite insensitive to changes in weighting factors. To greatly enhance the computational efficiency, two schemes of the correction equation are proposed which have been realized by the rearrangement of the correction equation. Simulation experiments on test systems, which range in size from 5 to 1047 buses, have shown that the proposed algorithm has reached the level of practical applications due to its fast and robust property.

KW - Interior point methods

KW - Perturbed kkt conditions

KW - Power system

KW - State estimation

KW - Weighted nonlinear l norm estimation

UR - http://www.scopus.com/inward/record.url?scp=35848929284&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=35848929284&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:35848929284

VL - 17

SP - 41

EP - 42

JO - IEEE Power Engineering Review

JF - IEEE Power Engineering Review

SN - 0272-1724

IS - 10

ER -