抄録
A Hamiltonian walk of a connected graph is a shortest closed walk that passes through every vertex at least once, and the length of a Hamiltonian walk is the total number of edges traversed by the walk. We show that every maximal planar graph with p(≥ 3) vertices has a Hamiltonian cycle or a Hamiltonian walk of length ≤ 3(p ‐ 3)/2.
本文言語 | English |
---|---|
ページ(範囲) | 315-336 |
ページ数 | 22 |
ジャーナル | Journal of Graph Theory |
巻 | 4 |
号 | 3 |
DOI | |
出版ステータス | Published - 1980 |
外部発表 | はい |
ASJC Scopus subject areas
- 幾何学とトポロジー
- 離散数学と組合せ数学