An Urabe type convergence theorem for a constructive simplified Newton method in infinite dimensional spaces

Shin'ichi Oishi, Masahide Kashiwagi, Mitsunori Makino, Kazuo Horiuchi

研究成果: Conference article査読

抄録

A constructive simplified Newton method is presented for calculating solutions of infinite dimensional nonlinear equations, which uses a projection scheme from an infinite dimensional space to finite dimensional subspaces. A convergence theorem of the method is shown based on Urabe's theorem. For a class of successive approximation methods containing an infinite dimensional homotopy method, a stopping criterion is shown using the convergence theorem. The authors show that under a certain condition the stopping criterion is satisfied in finite cycles of iteration.

本文言語English
ページ(範囲)1236-1239
ページ数4
ジャーナルProceedings - IEEE International Symposium on Circuits and Systems
2
出版ステータスPublished - 1991 12 1
外部発表はい
イベント1991 IEEE International Symposium on Circuits and Systems Part 4 (of 5) - Singapore, Singapore
継続期間: 1991 6 111991 6 14

ASJC Scopus subject areas

  • 電子工学および電気工学

フィンガープリント

「An Urabe type convergence theorem for a constructive simplified Newton method in infinite dimensional spaces」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル