Analysis of a Reduced-Order HDG Method for the Stokes Equations

Issei Oikawa*

*この研究の対応する著者

研究成果: Article査読

19 被引用数 (Scopus)

抄録

In this paper, we analyze a hybridized discontinuous Galerkin method with reduced stabilization for the Stokes equations. The reduced stabilization enables us to reduce the number of facet unknowns and improve the computational efficiency of the method. We provide optimal error estimates in an energy and (Formula presented.) norms. It is shown that the reduced method with the lowest-order approximation is closely related to the nonconforming Crouzeix–Raviart finite element method. We also prove that the solution of the reduced method converges to the nonconforming Gauss-Legendre finite element solution as a stabilization parameter (Formula presented.) tends to infinity and that the convergence rate is (Formula presented.).

本文言語English
ジャーナルJournal of Scientific Computing
DOI
出版ステータスAccepted/In press - 2015 8月 30

ASJC Scopus subject areas

  • ソフトウェア
  • 計算理論と計算数学
  • 理論的コンピュータサイエンス
  • 工学(全般)

フィンガープリント

「Analysis of a Reduced-Order HDG Method for the Stokes Equations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル