Analysis of critical short-time langevin dynamics in two-dimensional φ4 theory on the basis of a higher-order algorithm

Tsuyoshi Otobe*, Hiromichi Nakazato, Keisuke Okano, Kazuya Yuasa, Nozomu Hattori

*この研究の対応する著者

研究成果: Article査読

抄録

We investigate the critical short-time scaling of the two-dimensional lattice φ4 field theory with a Langevin dynamics. Starting from a "hot" initial configuration but with a small magnetization, the critical initial increase of the magnetization is observed, through which we determine the critical point. From the short-time relaxation dynamics of various quantities at the critical point obtained, the dynamic critical exponents θ, z and the static exponent β/ν are evaluated. In executing a Langevin simulation, an appropriate discretization method with respect to the time degree of freedom becomes essentially important to be adopted and we show that the well-known second-order form of discretized Langevin equation works well to investigate the short-time dynamics.

本文言語English
ページ(範囲)735-745
ページ数11
ジャーナルInternational Journal of Modern Physics C
20
5
DOI
出版ステータスPublished - 2009 5

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 数理物理学
  • 物理学および天文学(全般)
  • コンピュータ サイエンスの応用
  • 計算理論と計算数学

フィンガープリント

「Analysis of critical short-time langevin dynamics in two-dimensional φ<sup>4</sup> theory on the basis of a higher-order algorithm」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル