ANALYSIS OF THE SECOND PAINLEVE EQUATION BY BILINEARIZATION - AN EQUATION DESCRIBING LONG TIME ASYMPTOTIC BEHAVIOR OF WAVES IN CERTAIN SOLITON TRANSMISSION LINES.

研究成果: Article査読

抄録

One parameter family of solutions of the second Painleve equation, which describes long time asymptotic behavior of waves in certain soliton transmission lines, are constructed through its bilinear form. It is then shown that the derived solutions have the Painleve characteristic, i. e. , they have no movable critical points.

本文言語English
ページ(範囲)774-775
ページ数2
ジャーナルTransactions of the Institute of Electronics and Communication Engineers of Japan. Section E
E63
10
出版ステータスPublished - 1980 1 1
外部発表はい

ASJC Scopus subject areas

  • Engineering(all)

フィンガープリント 「ANALYSIS OF THE SECOND PAINLEVE EQUATION BY BILINEARIZATION - AN EQUATION DESCRIBING LONG TIME ASYMPTOTIC BEHAVIOR OF WAVES IN CERTAIN SOLITON TRANSMISSION LINES.」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル