Analytic smoothing effect for a system of Schrödinger equations with three wave interaction

Gaku Hoshino*, Tohru Ozawa

*この研究の対応する著者

研究成果: Article査読

3 被引用数 (Scopus)

抄録

We consider the global Cauchy problem for a system of Schrödinger equations with quadratic interaction. Two types of analytic smoothing effect for the solutions are formulated in the small data setting under the mass resonance condition. One is the usual analytic smoothing effect in space variables in terms of the generator of Galilei transforms. We prove the existence and uniqueness of global solutions which are analytic with respect to Galilei generators for sufficiently small data with exponential decay at infinity in space ℝn with n ≥ 3. The other is analytic smoothing effect in space-time variables in terms of generator of pseudo-conformal and Galilei transforms. We prove the existence and uniqueness of global solutions which are analytic with respect to pseudo-conformal and Galilei generators for sufficiently small data with exponential decay in ℝ4. We also discuss the associated Lagrange structure.

本文言語English
論文番号091513
ジャーナルJournal of Mathematical Physics
56
9
DOI
出版ステータスPublished - 2015 9

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 数理物理学

フィンガープリント

「Analytic smoothing effect for a system of Schrödinger equations with three wave interaction」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル