### 抜粋

We study the global Cauchy problem for a system of Schrödinger equations with two wave interaction of quadratic, cubic and quintic degrees. For suciently small data with exponential decay at innity we prove the existence and uniqueness of global solutions which are analytic with respect to Galilei and/or pseudo-conformal generators for suciently small data with exponential decay at innity. This paper is a sequel to our paper [22], where three wave interaction is studied. We also discuss the associated Lagrange structure.

元の言語 | English |
---|---|

ページ（範囲） | 697-716 |

ページ数 | 20 |

ジャーナル | Advances in Differential Equations |

巻 | 20 |

発行部数 | 7-8 |

出版物ステータス | Published - 2015 7 1 |

### ASJC Scopus subject areas

- Analysis
- Applied Mathematics

## フィンガープリント Analytic smoothing effect for a system of schrödinger equations with two wave interaction' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

## これを引用

Hoshino, G., Ozawa, T., & Ponce, G. (2015). Analytic smoothing effect for a system of schrödinger equations with two wave interaction.

*Advances in Differential Equations*,*20*(7-8), 697-716.