Analytic structure of phase-locked loops in complex time

Hisa Aki Tanaka*, Toshiya Matsuda, Shin'ichi Oishi, Kazuo Horiuchi


研究成果: Article査読


The analytic structure of the governing equation for a 2nd order Phase-Locked Loops (PLL) is studied in the complex time plane. By a local reduction of the PLL equation to the Riccati equation, the PLL equation is analytically shown to have singularities which form a fractal structure in the complex time plane. Such a fractal structure of complex time singularities is known to be characteristic for nonintegrable, especially chaotic systems. On the other hand, a direct numerical detection of the complex time singularities is performed to verify the fractal structure. The numerical results show the reality of complex time singularities and the fractal structure of singularities on a curve.

ジャーナルIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
出版ステータスPublished - 1994 11月 1

ASJC Scopus subject areas

  • 信号処理
  • コンピュータ グラフィックスおよびコンピュータ支援設計
  • 電子工学および電気工学
  • 応用数学


「Analytic structure of phase-locked loops in complex time」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。