Analytic structure of phase-locked loops in complex time

Hisa Aki Tanaka*, Toshiya Matsuda, Shin'ichi Oishi, Kazuo Horiuchi

*この研究の対応する著者

研究成果: Article査読

抄録

The analytic structure of the governing equation for a 2nd order Phase-Locked Loops (PLL) is studied in the complex time plane. By a local reduction of the PLL equation to the Riccati equation, the PLL equation is analytically shown to have singularities which form a fractal structure in the complex time plane. Such a fractal structure of complex time singularities is known to be characteristic for nonintegrable, especially chaotic systems. On the other hand, a direct numerical detection of the complex time singularities is performed to verify the fractal structure. The numerical results show the reality of complex time singularities and the fractal structure of singularities on a curve.

本文言語English
ページ(範囲)1777-1782
ページ数6
ジャーナルIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
E77-A
11
出版ステータスPublished - 1994 11 1

ASJC Scopus subject areas

  • 信号処理
  • コンピュータ グラフィックスおよびコンピュータ支援設計
  • 電子工学および電気工学
  • 応用数学

フィンガープリント

「Analytic structure of phase-locked loops in complex time」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル