Analytical study of the splitting process of a multiply-quantized vortex in a Bose-Einstein condensate and collaboration of the zero and complex modes

K. Kobayashi, Y. Nakamura, M. Mine, Y. Yamanaka

研究成果: Article

3 引用 (Scopus)

抜粋

We study the dynamics of a trapped Bose-Einstein condensate with a multiply-quantized vortex, and investigate the roles of the fluctuations in the dynamical evolution of the system. Using the perturbation theory of the external potential, and assuming the situation of the small coupling constant of self-interaction, we analytically solve the time-dependent Gross-Pitaevskii equation. We introduce the zero mode and its adjoint mode of the Bogoliubov-de Gennes equations. Those modes are known to be essential for the completeness condition. We confirm how the complex eigenvalues induce the vortex splitting. It is shown that the physical role of the adjoint zero mode is to ensure the conservation of the total condensate number. The contribution of the adjoint mode is exponentially enhanced in synchronism with the exponential growth of the complex mode, and is essential in the vortex splitting.

元の言語English
ページ(範囲)2359-2371
ページ数13
ジャーナルAnnals of Physics
324
発行部数11
DOI
出版物ステータスPublished - 2009 11 1

ASJC Scopus subject areas

  • Physics and Astronomy(all)

フィンガープリント Analytical study of the splitting process of a multiply-quantized vortex in a Bose-Einstein condensate and collaboration of the zero and complex modes' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用