Analyticity of solutions to the non gauge invariant Schrödinger equations

Gaku Hoshino, Pavel I. Naumkin

    研究成果: Article

    1 引用 (Scopus)

    抜粋

    We study the global Cauchy problem for the non gauge invariant Schrödinger equations (Formula Presented). The application of the Galilei generator for the proof of the analytic smoothing effect of solutions to the Cauchy problem for non gauge invariant Schrödinger equations involves diffculties. In this paper we construct analytic solutions to the non gauge invariant Schrödinger equations in the case of analytic and suffciently small initial data. We use the power like analytic spaces and the analytic Hardy spaces as auxiliary analytic spaces characterized by the Galilei generator. Also we show that if the initial data ϕ decay exponentially and are suffciently small in an appropriate norm, then the solutions of the Cauchy problem for non gauge invariant Schrödinger equations exist globally in time and are analytic.

    元の言語English
    ページ(範囲)65-75
    ページ数11
    ジャーナルFunkcialaj Ekvacioj
    60
    発行部数1
    DOI
    出版物ステータスPublished - 2017

    ASJC Scopus subject areas

    • Analysis
    • Algebra and Number Theory
    • Geometry and Topology

    フィンガープリント Analyticity of solutions to the non gauge invariant Schrödinger equations' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用