Animal behavior classification using DeepLabCut

Shiori Fujimori, Takaaki Ishikawa, Hiroshi Watanabe

研究成果: Conference contribution

抄録

In this paper, we introduce a method to classify animal behaviors from videos taken by a fixed-point camera. In order to classify animal behavior, it is necessary to detect and track the animals. Conventional approaches for detecting moving objects are based on background subtraction and frame subtraction. Conventional methods are not suitable for detection of animals kept indoors since they are susceptible to sunlight and shadow. We propose a method to track animals and classify their behavior using skeletal information obtained by DeepLabCut. The experimental results show that the proposed method is superior to the conventional method.

本文言語English
ホスト出版物のタイトル2020 IEEE 9th Global Conference on Consumer Electronics, GCCE 2020
出版社Institute of Electrical and Electronics Engineers Inc.
ページ254-257
ページ数4
ISBN(電子版)9781728198026
DOI
出版ステータスPublished - 2020 10 13
イベント9th IEEE Global Conference on Consumer Electronics, GCCE 2020 - Kobe, Japan
継続期間: 2020 10 132020 10 16

出版物シリーズ

名前2020 IEEE 9th Global Conference on Consumer Electronics, GCCE 2020

Conference

Conference9th IEEE Global Conference on Consumer Electronics, GCCE 2020
CountryJapan
CityKobe
Period20/10/1320/10/16

ASJC Scopus subject areas

  • Signal Processing
  • Electrical and Electronic Engineering
  • Media Technology
  • Instrumentation
  • Computer Networks and Communications
  • Computer Vision and Pattern Recognition

フィンガープリント 「Animal behavior classification using DeepLabCut」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル